Industrial IoT

Amyas Phillips amyas.phillips@arm.com

The Architecture for the Digital World®

ARM spans sensors to servers

Infrastructure Servers, network infrastructure

ARM Cortex-A processors

Mobile computing and Gateways Cellular modems, SBCs ARM Cortex-R & Cortex-A

Sensor nodes MCUs, sensors, low power wireless

ARM Cortex-M

ARM in embedded

8.7 billion

ARM cores shipped in 2012

2.2 billion

ARM Cortex-M devices shipped in 2012 by leading semiconductor companies

sensors

32-bit intelligence starting at \$0.50

Gartner's hype cycle

ARM share price

Emerging technologies hype cycle

ARM

Source: Gartner August 2013

What IoT means

Industry has used distributed sensing and control for decades

What's new? Lower cost, increased scale, better utilisation

RAAAA

Not just a network connection

Why is the internet the most successful network?

- IP's "narrow waist"
 - Address system enables packet forwarding
 - Hides physical interfaces from applications
 - Application developers and networking engineers can innovate independently
 - Unifies many small island networks
 - Eliminates protocol gateways
- Permissonless innovation
 - Protocols can change without affecting the network
 - Base for further innovation

This time it's different

- Ubiquitous connectivity
 - Wireless anything you want to connect, you can connect
 - Even edge nodes can be internet peers
- Cloud services
 - Co-ordinate processes
 - Deliver anything as a service
- Big data
 - Aggregate the little data
 - Turn data into insight
- Standards
 - We know now what to standardise

Embedded Intelligence vs. Connected Intelligence

Virtualization of Things

- Web applications interact with virtualized objects through APIs
- Often through a layer of resource caching and indirection, e.g. service platform or gateway

Virtualization Enables Diverse Software Applications

- Documented interfaces and access control mechanisms enable interoperability
- Common patterns and standards for interfaces can drive compatibility and interoperability

Discovery interfaces are as

important as application

HYPER/CAT

interfaces

14

What Industrial IoT means

Drivers of producer surplus

Situational awareness increases operational efficiency

- Asset tracking
- Predictive maintenance
- Dashboards, analytics, co-ordination
- Apps become become part of the physical environment
 - Convenience, personalisation and user-centricity
 - Service AR, SSO for plant, tracking
- Further shift from capital to operational cost
 - Plant is not just equipment, its a relationship
 - Trains, planes and cars

Intelli**Sense.io**

The Power of 1%

Small savings at industrial scale over 15 years (GE)

- Better information enables
 better process
 management
- Small savings at industrial scale easily provide necessary ROI

INDUSTRIAL INTERNET BENEFITS

SOURCE: GE ESTIMATES / POSTMEDIA

Role of Security

- Insights come from big data
- Big data needs little data to be shared
- Sharing needs trust
 - "Whether a transaction would be organized within a firm or whether it would be carried out on the market depended on a comparison of the costs of organizing such a transaction within the firm with the costs of a market transaction that would accomplish the same result. All this is very simple and obvious. But it took me a year to realize it and many economists seem unaware of it (or its significance) to this day..." Ronald Coase, 1994 Nobel Lecture
- Trust needs security ...
- ... and transparency, in consumer applications
- Security is just a means to an end

Role of security II

Cyberwar, safety, extortion, reputation..

- Connected devices are more vulnerable
- In industrial applications even a single breach might have serious consequences
- They need to be defended
- Proportionate measures always depend on the specific situation
 - assets, applications, deployments
- Manageable with existing techniques
 - All of IT's armoury available
 - Firewalls, logs, per-device keys
 - Applied to a simpler domain

- Non-IP "island" networks need protocol translation to talk to one another
- Adds engineering cost
- Inserts single point of failure
 - Unless only acting as observer
- Computer networks did this in the 1980s before moving to all-IP
- Necessary as a legacy integration solution
 - e.g. SCADA
 - SCADA is not designed to be on the internet
 - http://www.cpni.gov.uk/advice/cyber/scada/

Designing for long deployment lifetimes

20+ year deployments

- Must support in-field, remote firmware updates
 - Even constrained devices need bandwidth, energy and memory to accept ~10kB firmware patches, ~annually
- Ideally AES in HW,
- Ideally very good entropy source (RNG)
- See NIST/BSI key length guidance for cryptography
 - http://www.keylength.com/
 - >>2030 AES: 192b ECC: 384b RSA: 384b/7680b
- Must be an owned asset
 - Or have defined transfer-of-ownership
 - Ownership meaning possession of the keys

Build or buy?

- Lots of people want to sell you a "you do the application" solution
- Lots of people would like to be "the IoT platform"
- Mostly there is still much clearer ROI in verticals

Backend – Private or Public Cloud

Embedded Devices

Embedded Devices

ARM

Takeaways

IoT is

- applications that span physical and cloud environments
- IP to the edge
- devices as web services
- standards based
- Ied by industrial applications
- IoT enables
 - greater visibility on assets
 - increased analytic capability
 - better coordination of processes

- To take advantage you need to
 - Feel free to experiment with hosted services to understand potential gains
 - Prepare your IT and ops departments to take control of connected assets
 - Assess and defend new threats

Amyas Phillips amyas.phillips @arm.com

Background

Key length guidance

NIST recommendations compiled by keylength.com

	Date	Minimum of Symmetric Strength Algorithms		Asymmetric	Discrete Logarithm Key Group		Elliptic Curve	Hash (A)	Hash (B)
2	2010 (Legacy)	80	2TDEA*	1024	160	1024	160	SHA-1** SHA-224 SHA-256 SHA-384 SHA-512	SHA-1 SHA-224 SHA-256 SHA-384 SHA-512
	2011 - 2030	112	3TDEA	2048	224	2048	224	SHA-224 SHA-256 SHA-384 SHA-512	SHA-1 SHA-224 SHA-256 SHA-384 SHA-512
	> 2030	128	AES-128	3072	256	3072	256	SHA-256 SHA-384 SHA-512	SHA-1 SHA-224 SHA-256 SHA-384 SHA-512
	>> 2030	192	AES-192	7680	384	7680	384	SHA-384 SHA-512	SHA-224 SHA-256 SHA-384 SHA-512
	>>> 2030	256	AES-256	15360	512	15360	512	SHA-512	SHA-256 SHA-384 SHA-512

Design patterns

- IP to the edge
- Devices are web services too
- Design for intermittent offsite connectivity
 - Tight control loops over public internet are not advisable
 - In fact any tight control loop ought to be local and have dedicated connections on site
- Every device has its own public-private key pair
 - Prevent class breaks
 - Greater provisioning flexibility
- Connected devices' connectivity managed by IT departments
 - "Device networks" managed as infrastructure, similarly to corporate WiFi
 - Also hold the security keys and documentation of web APIs
 - Control access by internal and external services
 - What devices do is managed by ops teams

Is interoperability inevitable?

- Remains to be seen which industry verticals have an interest in standard models
- Needs interoperability to be in everyone's interests
- Standards solve common problems
- Likely to solve a problem you have, even if you don't need interoperability

Why now?

I990s:Why would we want to connect edge devices to the internet?

- Facilitate integration
- Eliminate costly protocol gateways
- Use cheap off-the-shelf parts and well-tested protocols
- 2000s: Is it feasible to connect edge devices to the Internet?
 - Lightweight IP stacks run on kBs RAM and ROM
 - 6LoWPAN / CoAP standards cut overheads
 - Low cost embedded linux devices, wifi and cellular became widespread
- 2010s: What can we do with internet-connected edge devices?
 - Capabilities beyond local control

i vs. l

Edge devices may be constrained by

- energy
- bandwidth
- compute (RAM, Flash, MHz)
- Constraints propagate to protocol choices
 - Can cut IP stacks right down to 10kB Flash, 2kB RAM
 - Painful to program, sacrifice some of the benefits of IP
- Sensible minimum internet peers
 - 512k Flash, 128k RAM (for networking, security, application, scratch space for updates)
 - Bandwidth to accept ~10kB firmware patches, energy budget to accept them ~annually
 - Ideally AES in HW, very good entropy source (RNG)

[©] Matt Turck (@mattturck), Sutian Dong (@sutiandong) & FirstMark Capital (@firstmarkcap)

The third industrial revolution?

